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Gaussian random processes on spheres are studied as models of fluctuating fluid vesicles. We derive
expressions for the mean volume, surface area, curvature, and square curvature of vesicles with arbitrari-
ly strong Gaussian fluctuations. A Feynman-Hellman approximation allows, by variational minimiza-
tion, a consistent derivation of structure factor and free energy of vesicles. As an example, we investi-
gate a fluctuating vesicle with fixed mean surface area and volume for a wide range of values of the bend-

ing modulus.

PACS number(s): 87.22.Bt, 05.40.+j, 02.40.—k

I. INTRODUCTION

It is now well established that systems of fluid surfac-
tant membranes (or monolayers) can be described by the
curvature-elastic Hamiltonian of the surfactant film
(1-3]

H= deS[ZK(H—-HO)2+EK], (1)

where H and K denote mean and Gaussian curvatures,
H, is the spontaneous curvature (which is zero for bilayer
membranes), and «, kK are the bending and saddle-splay
moduli (in units of k5 T), respectively. However, a satis-
factory representation of all the complex shapes which
the membrane film can form remains a challenge in par-
ticular for systems characterized by strong thermal fluc-
tuations. In the case of closed membranes (vesicles),
there have so far been two major ways of dealing with the
problem of representing the effective surface of the vesi-
cle: (i) for stiff systems («x >>1) one can model vesicles as
objects that fluctuate slightly around given equilibrium
shapes [4-7] or—neglecting the thermal fluctuations of
the membrane entirely—as surfaces of revolution, e.g.,
[8—11]; (ii) for “soft” membranes with k=0(1), numeri-
cal simulations can be used [12,13] to study the equilibri-
um shapes of the vesicle. The aim of this paper is to ex-
plore the possibilities of an analytical description of —
possibly strongly —fluctuating vesicles which is suitable
in both the high and low « regimes. The paper is organ-
ized as follows. We first introduce random fields on
spheres as models of closed membranes and derive the
curvature and other important physical quantities com-
monly used in the description of fluctuating vesicles.
Then a variational theorem is applied to consistently
derive the structure factor and the free energy (i.e., in-
cluding the entropy term) of fluctuating vesicles. Appli-
cation of this model to the simple case of one fluctuating
vesicle with constant mean surface area and volume and
zero spontaneous curvature reveals, among other things,
the possibility of an ‘“‘order”-*“disorder” transition upon
change of the bending modulus (formally similar to the
one observed in microemulsions and sponge phases [14])
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and entropically stabilized shapes with significant contri-
butions from odd / modes.

II. ISOTROPIC RANDOM FIELDS ON SPHERES

We consider a random process £ on a sphere & in » di-
mensions whose correlation function is isotropic, i.e.,
only depends on the spherical distance ¥ between two
points rE&S,r' €S and which can be represented as [15]

Ci" =2 2(cosy)

Cl(n—Z)/Z(l) ’ )

(EDE)) =S byh(l,m)
1=0

where the C denotes Gegenbauer polynomials and where
b,EO, Eb[h(l,m)< . (3)

The respective random process can be represented as a
sum [15]

E(r)=23 &1 Sy (1), 4)
Im

where the S;,, are spherical harmonics and the random
variables &, observe

Eim 2 =0, (Epn&rm ) =b;8;8 -

In practice, n =2 [16,17] and n =3 are interesting. In
particular, for n =3 one can represent the random pro-
cess as a dimensionless sum [15,18,19] which we denote

g(6,¢)=34a,,Y,,(6,4) (5)
Im
with a two-point correlation function [18,21]
’ ' — 1 2
(g(6,0)g(0,¢ ))—EZIa,ml P,(cosy), (6)
Im

where the P; are Legendre polynomials and
cosy =cosfcosf’ +sinbsinf’cos(¢d —¢’).

If we further specialize to amplitudes q;, that have
Gaussian distributions, the process Eq. (5) becomes also a
Gaussian process in real space and is thus completely
determined by its mean and variance. Without loss of
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generality, we can consider processes with zero mean.

Because the correlation function, Eq. (6), is infinitely
often continuously differentiable, all its derivatives are
also Gaussian random processes [19]. In particular, we
will need the correlation functions involving the first and
second derivatives that can be gained by appropriately
differentiating Eq. (6); cf. the Appendix.

III. STATE REPRESENTATION
AND STATISTICAL AVERAGES

The vesicle representations commonly used throughout
the literature are (i) slightly fluctuating shapes [4-6] and
(ii) surfaces of revolution, e.g., [8—11]. Both are suitable
for describing very stiff systems with little or no fluctua-
tions. The former have been used in numerous papers
trying to gain the bending constant of a membrane from
measuring the fluctuation spectrum of a vesicle, e.g.,
[7,20-22]. The latter were applied to calculate various
red blood cell shapes. Recently, Heinrich, Svetina, and
Zeks have tried to go beyond the restrictions of represen-
tations (i) and (ii) in [23] by expanding into a nonrandom
series of spherical harmonics (in contrast to our represen-
tation, which is based on the correlation theory of ran-
dom fields).

We start from representations formally similar to those
used in (i). The interface is given by the nodal surface
u(r,0,¢)=0 through a scalar field u (7,0,¢),

u(r,0,6)=r—pl(g(6,¢)), (7

so that the radial coordinate is single valued. We also
demand that I'(g) be continuously differentiable. A form
often used in the literature is [4]

Ig]=1+g(6,4). (8)

It is neither unique nor particularly well behaved because
it can lead to complications when the random process g
reaches values that are large and negative. We will nev-
ertheless use it because it is mathematically very simple,
it will allow us later to compare with known results in

J

<f [ [swlvulo dV>

0

<fffS(u)!VuIOrzsinededwr)
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certain limits, and, most importantly, because its entropy
can be systematically approximated. To avoid pathologi-
cal states arising from zero or negative values of the radi-
al component, one could more conveniently employ state
representations of the form

I[g]l=1+g%6,¢), )

whose bending energy, surface area, etc. can also be
rigorously evaluated [albeit more cumbersomely than for
Eq. (8)] and which might therefore be useful as models of
nonaxisymmetric shapes in theories based on pure energy
minimizations. On the other hand, the evaluation of the
entropy of transformed random fields of type Eq. (9) is, to
our knowledge, currently not known so that we will not
follow it up in the context of this work.

Next we have to establish the differential operators re-
lated to the bending Hamiltonian Eq. (1) and possibly to
energies associated with changes in surface area or
volume. The normal vector is n=Vu /|Vu| [for Eq. (8),
Vu=(1,—gq/r, —g¢/(r sinf)) where subscripts denote
derivatives] and determines the main physical operators
for curvature @ H=1divn and surface area
dS=r?|VuldQ.

There are two ways of proceeding from here. (i)
Throughout the literature one usually performs a surface
integration first and (implicitly, because of the ubiquitous
use of the equipartition theorem) a Gaussian ensemble in-
tegration second. After the surface integration is per-
formed, no statistical quantities are left and the Gaussian
ensemble integral results in a trivial factor of unity. One
assumes commonly g and its derivatives to be small and
expands the relevant operators up to second order. Using
the usual angular momentum Casimir operator L2, one
can perform the required surface integrals up to second
[4-6] or higher (but finite) order in g [17,24]. (ii) One can
reverse the order of integrations and exploit the fact that
g is a random process to perform ensemble (or time) in-
tegrations first and the surface integration second. Ex-
plicitly, for any differential operator O on a surface given
by Eq. (7) [25],

0

=< [ [1vulp’T?0sin6 d6d¢>o

=47p*(|Vu|T?0),,

where { ), denotes ensemble averaging and where we
have assumed translational invariance of the problem in
the last step. For the bending Hamiltonian (with k=0
because we cannot investigate topological changes) this
means

(#)o=4mp* |Vu| T2 26(H —Ho P1)g - 10

Similarly, one can write the terms involving surface area
and volume as

([, as) =4mp*(r2ivuly, (an

and

=1 . 4T 33
<deV>0 3<fsrndS>0 oM, (2)

For the actual evaluation of the Gaussian averages, the
correlation matrices are required because the various ran-
dom processes (the field g and its derivatives) are not
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necessarily decoupled [26]. The matrix elements of the
correlation matrix can be calculated straightforwardly;
cf. the Appendix. With the definitions

1

Uozz;hn Vim » (13)
1 1

01_4#%V1m21(l+1), (14)
=Lls, Lip 2

2= 4y 2V g LU H 1221+ 1], (15)

where v,,, =|a,,, |, the correlation matrix is (cf. the Ap-
pendix)
o, 0 O —0, 0 —0,
0 o, O 0 0 0
0 0 o, O 0 0
4= —o, 0 0 o0,+30, 0 o,+0, (16)
0 0 0 0 o, O
-0y, 0 0 o,to, 0 o,+30,

and the ensemble average ( Q ), over the quantity Q reads
explicitly [26]
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(@)= ” - [7 dx
7y A N
X exp —%XA “IxT, 17
with x=(g,g¢,g9,g99,g9¢,g;¢). Before evaluating these

integrals for specific representations, we see that owing to
Egs. (13)—(15) the result has to be a function of /(] +1)
which is essentially the eigenvalue of the only Casimir
operator of the algebra so;, as it should be. This has al-
ready been pointed out by Peterson [27]. Another impor-
tant general property is that second derivatives of g do
not appear in the complicated square root parts of the
operators (implied by |Vu|). Gaussian integrations over
the second derivatives can therefore be explicitly per-
formed and one finds after some algebra that o, appears
only linearly in the final result. We will take advantage
of this later. Finally, we see that the zeroth and second
derivatives are coupled, signifying that the invariance of
the energy under / =0,1 deformations [28] in the second
order approximation will not hold in general.

We have thus derived the statistical averages over the
relevant physical operators to all orders in g and its
derivatives for single-valued representations of type Eq.
(7) in terms of single to sixfold Gaussian integrals.

We can illustrate this for the example of representation
equation (8), where we find for the mean square curvature

477'<l dS‘(dlvn)2> =4t fw fwdg dze_gzmao)e L Py - -
4 dQ 0 V2mo, 8017 —=0 r2
2 o 2 2
2r 4328 | +4p g (2r 4322 | |14 122
r oo r 27,2
2 g-% 1 2 2 2 3 4
+4p? |0 ————+g 1+—2-2L2 + 8p%0, |14+255 + =222 (18)
oy o} r r 8 r
the mean curvature,
‘ —-1
1 dS —g2/20,) —z/(20,) P
417< —div n> =4 dgdze e Y14z
2da 0 \/27100 401 f f & r?
P g1 1 p°
2r+3z " +2gp;o— 1+—2—z ) (19)
the mean surface area,
47r< dS> f f de dz gz/(200)e—z/(2al)r2 1+2L2 2 (20)
dQ \/2770 201 g r?
and the mean volume of the vesicle
4m [ dV 4r 1 re —g%/(204) 3
3 <d9> 3 V270, Vanod e r @1
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where dS/dQ=r?Vu| and r=p(1+g). Equation (18)
appears to have a divergence for r—0. We can avoid
this divergence by restricting the region of integration to
the “well-behaved” part of the vesicle by introducing a
finite-size, molecular cutoff r, (later we set r,=1) for the
radial component ». This can be done by multiplying all
operators with a Heaviside step function, which is
equivalent to changing the integration range of g from

* . to f f”’c /p> the omitted regions can be imagined
to be filled by “patches” of surface that lie on a sphere of
radius r,. They should not have any crucial effect as long
as the vesicle is large compared to a micelle. We will
therefore neglect these problematic regions in the numer-
ical example calculations below.

While Egs. (18)—(21) give us the possibility of studying
vesicle shapes that can deviate drastically from the spher-
ical shape, our representation is still single valued. Hence
excitations of elliptical, discocyte, dumbell, pear-shape,
budding type, and moderate cup shape are covered but
extreme stomatocytes are not. This restriction, however,
should be more than offset by the capacity of the model
to treat fluctuations more accurately, thus including soft
vesicles with low values of the bending constant. Such
“floppy” vesicles have been studied experimentally [29]
and appear to have technological potential as drug
delivery systems [30]; they have—according to [13]—so
far only been investigated numerically.

IV. FREE ENERGY

To determine the free energy of vesicles, we use a vari-
ational method. An upper limit to the free energy & of a
system characterized by a Hamiltonian # can be given
by [31,25]

F<F=(H—Hy)o+E,. (22)

Here F is the free energy associated with the bending
Hamiltonian # and F, is the free energy of a Gaussian
[25,32]

E(): —lzlnvlm. (23)
2 Im

(FHy), is, according to the equipartition theorem, a con-
stant and (¥f), is given by Egs. (18),(19). Equation (22)
is markedly different from free energies based on the
equipartition theorem (e.g., [6]) which assume a ‘“‘quasi-
rigid” regime «>>1 [33]. We also note that our theory
J

F—47 2K<£H2> —4KHO<£H> +2KHg<iS—> +x<£> +Ap<ﬂ>
dQ 0 0 0 0 0

dQ dQ
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includes, in principle, all length scales so that application
of renormalized rather than bare bending moduli is not
necessary.

Surface tension and pressure can be included by adding
terms of the sort ~A{dS/dQ),and ~Ap{dV/dQ),to
Ff, where A and Ap are, depending on the model, physical
parameters or Lagrange multipliers. Similarly, the mean
curvature term can either enter with constant spontane-
ous curvature H, (spontaneous curvature model, [8]) or
be coupled by a Lagrange multiplier [bilayer coupling hy-
pothesis (BCH), [34,9,22], which is not pursued here].

Minimization of the right-hand side of Eq. (22) with
respect to the mode distribution v;,, determines the best
Gaussian ensemble that approximates the real ensemble
characterized by the bending Hamiltonian [25,35]. This
minimization depends on the specific physical situation
and can be technically very complicated. In the follow-
ing section we consider a simple example.

V. VESICLES WITH CONSTANT MEAN
SURFACE AREA AND VOLUME

We can use our theory to investigate systems similar to
the ones of Deuling and Helfrich [8], i.e., single vesicles
with given mean surface area S; and mean volume V.
The correspondence is, however, not exact because fluc-
tuations around the mean are possible by definition (as we
are dealing with random systems). Conservation of
volume and area become rigorous only if we follow Hel-
frich and consider ensembles, (with fixed number N) of
vesicles [6]; in ensembles area fluctuations can be inter-
preted as local fluctuations in the surfactant concentra-
tion which do not require further consideration. For a
single vesicle area fluctuations can only be related to
stretching and compression of the membrane. We should
therefore restrict ourselves to (i) a vesicle made up of a
large number of constituent molecules (number of degrees
of freedom) and (ii) state of the vesicle whose volume and
area fluctuate only slightly, in case such states are found
to be stable. The second condition can always be en-
forced if we introduce an energy penalty for fluctuations
of surface area and volume around their respective mean
values. These are coupled to the energy by two moduli
and k,, where k; is a stretch modulus [3].

We use the notation introduced by Deuling and Hel-
frich: the equivalent radius R of the vesicle is given by
So=47R} and the reduced volume by v =V/V,. We
have to minimize F (for k=0) under the constant mean
area and volume constraints

+F,=F+F, . (24)

dQ dQ

This expression differs from previously considered free energies, which only contained the bending energy and the con-

straints in ensembles of nonrandom configurations.

The extremal structure factor can be derived by taking the derivative of F with respect to the v,,,, 0F /dv,,, =0; the
second derivative shows that the extremal structure factor is minimal:
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In general,
Vi =[al(1 +1)2+bl(I +1)+c] ' . (26)

We note now that dF /30 ,=03F /30,(0,,0;) because, as
we saw, o, enters Eq. (18) only linearly. On the other
hand, the two constraints fix 0y and o4,

<%>0=<%>0(00)=const=% 7
<5—3>0=<gd(§]*>o(00,ol)=const=S0 ,

so that the coefficient a is readily given as
_ k 9(dS/dQH?),

2
5 %0, (28)

a

and the remaining coefficients b,c are uniquely (cf. the
Appendix) determined by the two equations

1
0p= Evlm ’
4 I

_ 11
> S1U+ vy, (29)

where v,,, has the form Eq. (26) with a given by Eq. (28).
A natural restriction on this equation system is given by
Eq. (3), implying that a, b,c have to yield structure factors
with v, (a,b,c) = 0.

Thus the problem is formally solved at fixed
«,Hy,So,V, and p for state representations of form Eq.
(8). We have checked our formalism numerically and
verified for various examples that indeed a minimum of
the free energy had been found. To determine eventually
the most physical Gaussian state for a vesicle given by
Eq. (8) and at fixed ,{dS /dQ ), {(dV /dQ),, we have to
minimize the free energies with respect to the (auxiliary)
parameter p (note that the value of the stretch modulus
Kk, enters only in the final minimization with respect to p
but not in the variational minimization because 0,0 are
for given p fixed in the system discussed here).

To illustrate our theory, we have chosen a system
characterized by a number of realistic parameters: with a
membrane thickness r,=1, the equivalent radius is
R,=50 so that Sy=4wR3,V,=4/37R}. In order to
determine the upper summation cutoff in ¥;, we follow
Helfrich and identify M, the number of degrees of free-
dom, with (/,+1 )?=2M, where we prefer here unit
patches of twice the molecular scale to stay closer to the
regime where the linear elasticity Hamiltonian is valid
[36]; hence, in our example /, =~ 88.

At v=V/Vy=1, a value of k=0.5 and 2.5 and zero
stretch modulus, the free energy decreases steadily for de-
creasing values of p. Closer investigation shows that en-
tropy drives the vesicle towards increasingly fluctuating
ensembles. The structure factors of the vesicle are, for all
p, monotonically decreasing (i.e., peaked at / =0) and
represent thus a disordered state with no dominant mode
that could give the vesicle a well-defined shape. High
values of the stretch modulus, on the other hand, stabi-
lize the vesicle and for k,— o (when all fluctuations are
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suppressed) the shape of a perfect sphere is retrieved.
For k=2.5 the situation is more complex. There we find
(for k;, =0) two free energy minima at large p~48 and at
very small p. The large p minimum is characterized by
weak fluctuations and can be reasonably identified as a
(metastable) spherical vesicle state. Its structure factor
shows again no dominant nonzero mode. The global
minimum appears as in the case k=0.5 to be at very low
p<<R,. For higher « the local minimum deepens but
does not become global (up to a value of k=10 con-
sidered here).

For v=0.75 and k=0.5 there is a local free energy
minimum close to the saturation value of p. In contrast
to v =1 the free energy is now not dominated by the en-
tropic contribution, and competition with the bending
energy leads to the formation of a shallow free energy
minimum. The structure factor resembles qualitatively
that of k=0.5, v =1, i.e., the coefficient b in Eq. (26) is
positive and hence the vesicle shape is disordered. For
k=2.5 the local minimum has deepened and the struc-
ture factor Eq. (26) now has a peak at nonzero /, i.e.,
b <0 in Eq. (26) meaning that between k=0.5 and k=2.5
an order-disorder line has been crossed that is conceptu-
ally similar to the disorder line observed in microemul-
sions and sponge phases [14]. The structure of the vesicle
is dominated by the / =2 mode as often seen in theories
based on the minimization of the bending energy only.
Indeed, the mechanism that accounts for the stability of
the vesicle differs qualitatively from the case k=0.5 in
that the bending energy itself shows now a minimum at
high p. For higher bending moduli, k=5 and k=10, the
large p minima become deeper, as expected; for k=5 both
the / =2 and / =3 modes are dominant while for kX 10
excitations of type / =3 prevail. We note that the strong
I =3 mode is indicative of a shape with broken “up-

10' , , ‘ , . r ,
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FIG. 1. Approximate structure factors v,,, of a vesicle at re-
duced volume v =0.75 for values of k=0.5 (H), 2.5 (@), and
100 (#); the area of the vesicle is specified in the text. The ap-
pearance of wv,, changes from monotonic to peaked at
0.5 <k <2.5. The full domain of 0 </ </, =288 has, for the sake
of clarity, not been plotted. The free energy minima were evalu-
ated at a finite step size of Ap=0.5, so that small deviations of
the minimal structure factors from the ones plotted here are
possible.
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FIG. 2. Approximate structure factors v, of a vesicle at
bending modulus k=100 for values of v=0.75 (@), 0.85 (M),
and 0.975 (§).

down” symmetry such as stomatocytes (or pears) [11],
while strong / =2 modes are, for example, characteristic
of prolate and oblate ellipsoids, dumbbell, and discocyte
shapes. It would be interesting to actually plot detailed
real-space images of the corresponding real-space struc-
tures for comparison with the (nonrandom) shapes typi-
cally found in the k— o theories, e.g., [8,9,11]; the com-
putational effort to do so with good statistical accuracy
goes, however, beyond the scope of this paper and will be
pursued elsewhere.

k— oo theory predicts for zero spontaneous curvature
a sequence stomatocyte-oblate-prolate upon increase of v,
with a critical v =0.59 for the oblate-stomatocyte transi-
tion. We observe similar qualitative behavior when in-
vestigating systems with 0.75<v =<1, H,;=0, and large
x=100: for values of v up to 0.8 <v <0.85 we find dom-
inant / =3 modes, while the spectra peak at / =2 for v up
to =0.975. Above v =0.975 the entropic contribution to
the free energy begins to stabilize appreciably strong [ =1
components (the energy term by itself would significantly
weaken / =1 in favor of / =2 modes). This appears to be
consistent with the prediction by Peterson [27], who
found that k— « systems (where no entropic effects are
taken into account) favor / =2 deformations in the limit
v—1.

In Figs. 1 and 2 we show structure factors evaluated
for the above sample systems v =0.75 (k=0.5, 2.5, 100),
and k=100 (v=0.75, 0.85, 0.975), respectively. Struc-
ture factors predicted by the random field model could, in
principle, serve as the theoretical input in measurements
of the bending moduli of membranes [7,20-22] and
should improve the accuracy of these measurements, in
particular for membranes in the low « regime [29], or for
membranes whose equilibrium state is nonspherical [22].
The (technical) disadvantage of a genuine low « treatment
would be that numerical evaluation of the structure fac-
tors replaces the simple analytical formulas available in
high « theory.

VI. CONCLUSION

We have presented in this paper a random field ap-
proach to the problem of the parametrization of fluctuat-
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ing vesicles. A general formalism based on Gaussian ran-
dom field theory was developed and physical quantities
related to the internal energy of a closed membrane (in-
cluding, e.g., mean surface area and mean curvatures)
were calculated to all orders in the fluctuations of the
membrane (for the class of single-valued representations).
The energy terms together with the entropy of a Gauss-
ian process constitute a systematic, variational upper
bound to the free energy of a vesicle (or ensembles of vesi-
cles). Minimization of the free energy bound made it pos-
sible to consistently derive the approximate structure fac-
tor and free energy of the vesicle.

The model goes beyond previous investigations of vesi-
cles by permitting the description of strongly fluctuating
nonspherical shapes unlike, e.g., [4—6], by minimizing the
free energy of these shapes (and not merely the bending
energy) in contrast with, e.g., [8—11] and by providing a
relatively simple theoretical framework with no necessity
for extensive numerical simulations [13].

As a first—and simplest—example, we studied the
behavior of a vesicle at given mean surface area and
volume as a function of the bending modulus « and the
reduced volume v. Our main observations include (i) the
distinction of states of the fluctuating vesicle—similar to
microemulsions and sponge phases—as disordered and
ordered, depending on whether the structure factor
shows a peak at nonzero wave vector, and (ii) that even in
the minimalistic example studied here, a rich variety of
strongly fluctuating (random and nonaxisymmetric)
shapes emerges, including entropically stabilized excita-
tions of odd / type.

The main shortcomings of our formulation are the
single-valuedness of the representation (a restriction not
encountered in theories based on surfaces of revolution or
in simulations) that also prevents us from studying the
important possibility of topological transitions (disin-
tegration of one closed membrane into several vesicles
should be expected at very small bending stiffness) and,
on a more formal level, the assumption of mode indepen-
dence of the model ensemble that might not be a good ap-
proximation under all circumstances [37].

Nevertheless, our results encourage application of the
random field description to more complicated physical
systems (such as ensembles of fluctuating vesicles [38]),
which will be investigated in future work.
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APPENDIX
1. Correlation function
(2(6,8)8(0,6))0="3 (@m0 (0:8) Y} (6,0).
I’'mm’

The averages over the random amplitudes can be explicit-
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ly derived because the Gaussian probability densities are
known to be

~exp

Re(a;,, )*+1Im(a,, )?
2vlm

and @, @y )0~8;_ 1 O m — -0 [cf., €.g., [32]). With the
Condon-Shortley phase convention [i.e.,
a,_,=(—1"a;, and Y; _, =(—1)"Y;; ] and the addi-
tion theorem of spherical harmonics we find, finally, Eq.
(6).

The correlation functions involving derivatives can be
calculated by

(2003
36rag9°

¥+
0,6~ ,g(e',¢'>>o
36'7'84"
_ ap+q +p'+q’
36734%30'7' 3¢y’

and the corresponding moments that enter the correla-
tion matrix follow by setting 6=0’, ¢ =¢' in the final for-
mulas. The moments are usually 8 dependent and the
general form of the correlation matrix contains many
nonzero matrix elements posing technical difficulties.
However, because both the field and the operators in the
Hamiltonian are so; invariants, the final result cannot de-
pend on 8. We can, therefore, choose any convenient an-
gle. For 6=1/2 the matrix simplifies into Eq. (16). As a
cross check of our calculations, it is apt to perform the
integrations over the physical operators for arbitrary 0 at
least for the quite simple operators for surface area,
volume, and mean curvature. With the transformation

(g(0,0)(6",8")),

84 —>8¢4SINb, ggy—>8ySIn0, g,4—>g4,8in0

it is possible to arrive at the same results as those given in
the text for the conveniently chosen value of 6=m/2.
Similarly, we have successfully checked our results by
rederiving the well-known second order results of Safran
[4] and Helfrich [6] using the general form of the correla-
tion matrix.

Finally, for the first example in Sec. V (v =1) we com-
pared numerically the values of the exact integrals for
surface, curvature, etc. with the approximate expressions
given by Helfrich [6] and found increasingly good agree-
ment for p— R, as it should be.

2. Uniqueness of the solution

To investigate the uniqueness of the solution of Eq.
(29), it is convenient to change to the approximate in-
tegral representation [6]. The equation system reads then
approximately

lC
fo (2l + 1), dl =470, ,

)
foc(21+1)1(1+1)v,,,, dl=870, ,

2699

with v;,'=al* (1 +1)2+bl(I +1)+c. Consider two dis-
tinct solutions by,¢; and b,,c, and abbreviate 2/ +1=4,,
(I +1)=2% (@l*(I +1)*+b,1(1+1)
+cy Nal*(1 +1)*+b,I(I +1)+c,)=D. Then

lc _
fo A,D " [(by—b A2+ (c;—¢;)]dl =0,

1(‘
fo A,D A (by—b)A2+(c,—c))1dI =0,

with D >0 for all /. Therefore, a change in the sign of the
integrands can only be effected by the factor
(b, —b,)A*+(c,—c;). This term is parabolic and can—
because we are only interested in positive /—become
zero at most one point Aye>ly, 0</;<I.. The integrals
can be split into two integrals by

] 1 I
f;----»foou--i—fl;-'-,each of which has an in-

tegrand that is either 20 or =0 over its respective in-
tegration range. Then

1
fooka_l[(bz—b,)k2+(c2—c1)]dl
1
=—flcka_l[(bz—bl))»2+(c2—cl)]dl ,
0
I
f0°x,,1r1x2[(b2—b1)x2+(c2~cl)]dl
IL' —
== [, 2D Wby = b+ (e, ¢ )] dl .

These equations can be divided (because b,;7b,,c,7c,
are assumed) and the ratio of the integrals can be called
A?, so that

folol,,D_lk2[(b2—b1)k2+(c2—c,)]dl
=A%fol°xp1)‘1[(b2—b1)x2+(c2—c1)]d1 . (A1

f{::ka“lkz[(bz—b‘)k2+(c2—cl)]dl
:A%f,:“k,,D“[(bz—bl)x2+(c2—c1)]d1, (A2)

with
AI=AZ=A". (A3)

On the other hand, the generalized mean value theorem
of integral calculus states that for two continuous func-
tions F(x), G (x) with either G(x)=>0 or G (x) <0 for all
x, [EF(x)G(xdx =F(§) [ 26 (x)dx with &SESE,
Applied to our case [F(x)—A?], this leads to equations
formally identical to Egs. (32), (33) but with

0<AZ=<I}, 13<A3<1%. (A4)

The equality signs in the above inequalities can be exclud-
ed because A? is strictly monotonic; hence, a contradic-
tion with Eq. (A3) has been found.
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